Kernel hierarchical gene clustering from microarray expression data
نویسندگان
چکیده
منابع مشابه
Kernel hierarchical gene clustering from microarray expression data
MOTIVATION Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector mach...
متن کاملHierarchical Clustering of Gene Expression Data
Rapid development of biological technologies generates a hug amount of data, which provides a processing and global view of the gene expression levels across different conditions and over multiple stages. Analyzation and interpretation of these massive data is a challenging task. One of the most important steps is to extract useful and rational fundamental patterns of gene expression inherent i...
متن کاملAssessing agreement of clustering methods with gene expression microarray data
In the rapidly evolving field of genomics, many clustering and classification methods have been developed and employed to explore patterns in gene expression data. Biologists face the choice of which clustering algorithm(s) to use and how to interpret different results from the various clustering algorithms. No clear objective criteria have been developed to assess the agreement and compare the...
متن کاملClustering Algorithms for Time Series Gene Expression in Microarray Data
illustrations, 75 numbered references. Clustering techniques are important for gene expression data analysis. However, efficient computational algorithms for clustering time-series data are still lacking. This work documents two improvements on an existing profile-based greedy algorithm for short time-series data; the first one is implementation of a scaling method on the pre-processing of the ...
متن کاملClustering analysis of microarray gene expression data by splitting algorithm
Preprint submitted to Elsevier Science 29 April 2003 A clustering method based on recursive bisection is introduced for analyzing microarray gene expression data. Either or both dimensions for the genes and the samples of a given microarray dataset can be classi£ed in an unsupervised fashion. Alternatively, if certain prior knowledge of the genes or samples is available, a supervised version of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2003
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btg288